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A quantum 6eld theory of magnetic and electric charge is constructed. It is veri6ed to be relativistically
invariant in consequence of the charge quantization condition eg/Ac =a, an integer. This is more restrictive
than Dirac's condition, which would also allow half-integral values.

'T is somewhat disturbing that the symmetry between
~ - electric and magnetic charge which is inherent in
Maxwell's equations does not seem to be realized in
nature. This is accentuated by Dirac's remarkable
suggestion' that the existence of magnetic charge wouM
imply the quantization of electric charge. Several
authors' have asserted recently that conjectured proper-
ties of relativistic S matrices are violated for a par-
ticle that carries magnetic charge. The compatibility
of the magnetic-charge concept with the principles of
relativistic quantum field theory has not been examined,
however. e This note is devoted to a general discussion
of that problem.

The content of the covariant Maxwell Geld equations

Q PPv jP Q +Pzv jP
+Ppv & yvXaP

is conveyed by the local conservation laws of electric
and magnetic charge,

where el, & is the completely antisymmetrical tensor, and

n(x) =1/(4z-[xi),

implies both the known canonical corrnnutator

iLA s'(x),z('(x') 5= (at)a(x —x') )'
= as~a(x —x )—alai n(x x )

and its magnetic analog

L&"(*)»'(*')5= (a ~( —'))'.
A quantum Geld theory is relativistically invariant if

the energy and momentum densities obey the equal-
time corrunutation relation'

—ipT" (x),T~(x')5= —(7's(x)+T ~(x'))apl(K —x ) .
Of course, the three-dimensional invariance require-
ments described by the linear- and angular-momentum
operators

Ps (dx) ~s Jkt — (dx) (gs'P01 g1Tsk)

by the three-dimensional transverse components of the
equations of motion

a.E=v X8—3, a,H= —v &&E—*j,

and by the equations of constraint

v E=j', v H=*j'.

Transverse vector potentials are introduced by the
deGnitions

r=vgAr, Er= —v+Br.

must also be satisGed.
We shall consider a speciGc model in which electric

charge e is carried by the spin--', field f, and magnetic
charge g by the spin- —,'field X. The energy density for
this system is given by

&m= sr (Es+H')+Pq (—iV —eAr —eA,)y+m, ~
+xq ( iv gB—& —gB,)x+—m, xx,

where Fermi operator products are antisymrnetrized,
as is the application of the coordinate derivatives. We
have deGned

The equal-time commutation relation

i[Asr(x), Bir(x')5= eg, ( a„n(x—x'),
where

E=E&—vy,
8=H' —v *y,

*Supported in part by the U. S. Air Force Once of Scientihc
Research under Contract No. AF49(638)-1380.' P. A. M. Dirac, Proc. Roy. Soc. (London) AI33, 60 (1931);
Phys. Rev. 74, 817 (1948).

'D. Zwanziger, Phys. Rev. 137, B647 (1965); S. steinberg,
ibid. 138, 8988 (1965); A. S. Goldhaber, ibid. 140, B1407 (1965).' An apparent exception is the contribution of N. Cabibbo and
K. Ferrari, Nuovo Cimento 23, 1147 (1962). However, these
authors do not consider the restrictions imposed by the Jacobi
identity on the commutators of non-integrable derivatives. I must
acknowledge some provocative discussions with S. Coleman, which
occurred in the same year as this reference. He had independently
devised a similar theory.

y (x)= (dx') n (x—x')j'(s'),

*P(x)= (dx') n(x —x') *j'(x'),

J. Schwinger, Phys. Rev. 127, 324 (1962). The form stated in
the text characterizes the restricted physical class of local systems.
See J. Schwinger, Phys. Rev. 130, 406 (1963); 130, 800 (1963);
and Nuovo Cimento 30, 278 (1963).There is a related independent
discussion by P. A. M. Dirac, Rev. Mod. Phys. 34, 592 (1962),
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A, (x) = (dx')a(x —x') *jo(x'),

B,(x) = (dx')b(x —x')jo(x') .

The structure of the vector functions a(x), b(x) will he
specified later.

The two current vectors are identified as

which is the required translation generator only if

b(x)= —a(—x) .
Ke shall defer the important discussion of angular
momentum.

The commutator between the energy-density con-
tributions of the two kinds of charges has several non-
local contributions. The condition for complete
cancellation is

epixxxBxxxX) (X—X )—BiGp(X—X )—Dphil(X —X)=0

j = e4VV, *j"=gxV"X.
or

—Vn(x) =VXa(x) .
The derived commutation relations

—z(jo(x),T"(x')j= —j'(g') Bpb (x—x'),
—it *j (x),To (x'))= —*j"(x')8 5(x—x')

assure the two local charge conservation laws. These
commutators are also contained in

—iEE(*) Too(, )j
= —H (x') XVb (x—x') —j (x')5(x—x'),

This equation cannot be solved without exception, in
view of the contradiction that appears between the left-
and the right-hand sides on integrating over a closed
surface containing the origin. There are solutions that
are valid almost everywhere, however. Thus

1t' nXx nXx
!a.(x) = $(x)—

!
2 E/x!+n x /x!-n xJ

=a,(—x) = a (x)
—iLH (x),T"(x')j

=E(g') XVb(x —x') —*j(x')6(x—x'),
is a solution at all points that do not lie on the infinite
line drawn through the origin in the direction of the
unit vector n. The nature of the singularity is indicated
by the nonvanishing limit of the integral extended
over an arbitrarily small surface pierced by the line
x=n!x! or the equivalent one-dimensional integral
drawn about the line,

and the latter imply the equations of motion for E
and II.

The evaluation of the energy-density commutator is
simplified by the delta-function nature of the commu-
tators that connect field strengths with the energy-
density contributions of the charged fields. Apart from
the commutator between the two charged field terms,
one obtains the anticipated form, with the momentum-
density identification

iim dS VXx.=limgdx x = —-', .

The complete equation obeyed by a (x) is, therefore,

VXa, (x)= —VX)(x)+h (x)
TP= EXH+yyo( iV eAr —eA,)—g-

+-.'VX (xv'&)+xv'( —iV —g&'—g&.)x
+-,'V X (xylo~&)! ~.

where

h, (x)= ——,'n(n x/j x!)8,(x)

The electromagnetic-6eld contribution to the mo- and b (x) is the two dimensional delta function in the
mentum density can be rearranged as plane orthogonal to n. The vector field h, (x) obeys

Note also that
(EXH)&——E .BIA —V (E AI, )+j'Az +~j'Bz'r

+V (AgrVy y(3I,A~)—
+V (BFV *4—*4~~E')

+VX (opV *P—o*gV$)!~. since

V h, (x)=—b(x) .

V a„(x)=0

The expression for the total linear momentum obtained
in this way is

P,= (dx)t E~ B„Ar Pyo.iBig —xyoiBI, &)—

and that

!x(-n x
4ora, (x) = VX n~ ln

X I'X

b (x)= —a, (x)

(dx) (dx') jo(x) *jo(x')La&(x—x')+b&(x' —x)j,
is an axial vector, in conformity with the space-
reflection characteristics of S~.

The change from one singularity line to another is a
gauge transformation, almost everywhere, on the vector
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where and the gauge-transformation discussion supplies the
uniqueness condition

eg/4' =—',e, (Dirac)

+xy'( —i«X v+-', e)x where e is an integer. The angular-momentum con-
struction is changed in only one detail, which derives

«XV) &+E&X

is the conventional total-angular-momentum operator.
The additional static-field contribution

it'1) x—x'

E4s) ix—«'i

has long been recognized. ' But it is only part of the
extra angular momentum, which is given completely by

J—J(s)+j
The meaning of the supplementary angular momentum
is evident. It generates the gauge transformation needed
to maintain the relation between the singularity line
and the coordinate system. The vector j, is not an in-

dependent angular momentum, however. Its com-
ponents are commutative, and the combination
J&s&+j, obeys angular-momentum commutation rela-
tions in consequence of the differential property

b~i «Xvb~s fn(x) —leos «XV8~i f~(x)
= —8~&X8~s f, (x) .

The eigenvalue spectrum of J is of the same integral or
half-integral nature as that of J"', since

n J=n J"&.

Angular-momentum considerations shed some light
on the charge-quantization condition, in relation to the
use of a semi-infinite discontinuity line. Consider the
alternative function

n)&x
a '(x) =—h, '(—x) = —$(«)

x —nx
which obeys

n. f,'(x) = —n L«Xa,'(«)+ (1/4s.)«/~ x~ j=1/4s .

Accordingly,

n J=n J"&+(1/4s.)Q*Q,

which introduces the total charge operators

Q= (dx)j'(x), *Q= (dx) *j (x) .

The eigenvalues of (I/4s)Q *Q are integer multiples of
the unit eg/4s. . If this term is considered simply as an
additive angular-momentum component, we are again
led to the Dirac quantization condition. But that does
violence to the geometrical equivalence of a rotation
about an axis through the angle 2x with the identity
transformation, apart from the characteristic sign re-
versal of half-integral spin fields. Thus, let X be a field
of spin s. Then we have

exp( —2s.in J)X exp(2s.in J)= (—1)"exp(sigQ)x

which is not merely (—I)"X, if the magnitude of eg/4'
assumes one of the half-integral values —,', —,', . This is
another indication that the charge quantization condi-
tion must be the stronger integer requirement for
eg/4s-.

The apparent contradiction between the two pro-
cedures is resolved by a more careful consideration of
the discontinuous-line integrals. I et n define the posi-
tive s axis and consider the limiting values of the line
integrals, drawn positively about the s axis, for a„' and
a . We distinguish three domains: s&0, z=0, s(0. The
values are

lim dx a '= —1,s)0

VX a,'(x) = —V $(x)+h, '(«) .

The function h, '(x) satisfies

v h, '(x) = —5(x),

and

= ——, , s=O

0, 2,(0

lim dx. a,= —2, s) 0
and is given by

h, '(x) = —n-,' (1+(n x)/
~
x

~
)5,(x) .

Now, if one encircles the line x=nt«~,

lim dx a '= —1

' H. A. Wilson, Phys. Rev. 75, 309 (1949).

0, s=O
=+-,', s(0,

where the assignment at a= 0 is taken as the average of
the two limits from opposite sides. The smallest non-
zero magnitude of the line integrals is the significant
one, and this is now recognized to be 2, in both pro-
cedures. Hence the correct charge quantization condi-
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tion is the integral restriction

eg/4m =N.

These two vector potentials are members of a class of
such functions for which the semi-inGnite discontinuity
line s&0 is weighted by a factor 0., and the line s&0
with a factor p, where

The three limiting values of the line integral are:
—n, ~~(—n+P), P, in the same order as above. The
integral charge condition is maintained since the dif-
ference of successive values is just ~. The possible values
of n and p are

G=x.( '+l ')x (*'—l ')

Xexp~ ig

They have the commutation property

IiG=GP exp(iegC),
where

dXJX dx2

~ t'VXa. (x,—x,)+VS(x,—xg)j
1

dX dl(.'eX e' h, (x—x'+he —l(,'e') .

—g(x)y (v —ieA(x))p(x)

3g' 8
=lim P(x+-', e) P(g——,'e)

2

where the integration path is a straight line connecting
the two equal-time points, and an average is to be per-
formed over all directions of e before letting

~
e~ —+ 0.

A similar limiting construction applies with f and eA
replaced by X and gB. It is sufhcient to consider the
operator combinations

Xexp( ie dx, :(A~+ A,) (x,))
' ". . . localized Geld operator products must be understood as

the limit of products de6ned for noncoincident points. "
J. Schwinger, Phys. Rev. Letters 3, 296 (1959).

where k is an integer. When one of these functions is
used, n (J—J"') becomes (1/4s.)Q *Q(u—P). The
eigenvalues of the latter operator are integral multiples
of k —e, an integer.

What conclusions concerning relativistic invariance
should be drawn from all these considerationsP Given
a pair of equal-time points, the arbitrary singularity
line can be chosen so that the fundamental energy-
density commutator condition is satisGed, verifying
relativistic invariance. It is also true, however, that the
commutator condition does not appear to be obeyed
everywhere, when the discontinuity line is Gxed. One
suspects that the breakdown which occurs when the
two points are connected by the discontinuity line is a
failure of the formal apparatus, rather than a violation
of relativistic invariance. We shall conGrm this by ex-
hibiting a limiting deGnition' of the charged-Geld con-
tribution to the energy density, which removes this
deGciency.

Let us observe that

In general, x—x' has a nonzero projection on the plane
perpendicular to n. Choose the vectors a and a' to be of
smaller length than this projection. Then h vanishes
for all X and X', C=O, and F commutes with G. It is
diGerent if x—x' is parallel to n. If we use the vector
function symmetrically associated with the discon-
tinuity line, for example, and note that

we get

~X~' n
eXe' nh (Xe—X'e') = b(l(,)b(V),

[eXe' nf

1 n (x—x') eXe' n
C= ——

2 ~n (x—x')
~

)EXP' n~

The number C does not vanish when the two points are
connected by the discontinuity line. Yet, as a conse-
quence of the charge quantization condition,

exp(iegC) =1
and Ii commutes with G. This discussion shows clearly
how relativistic invariance will appear to be violated in
any treatment based on a perturbation expansion.
Field theory is more than a set of "Feynman's rules. "

The relativistic quantum Geld theory of magnetic and
electric charge is of such beauty that we must repeat
after Dirac: "One would be surprised if Nature had
made no use of it."

Added mote: While the manuscript of this paper was
being typed, the 8 November 1965 issue of The Physical
Aevi' appeared. It contains a paper by C. R. Hagen on
the same subject LPhys. Rev. 140, B804 (1965)j, in
which the opposite conclusion is reached concerning
relativistic invariance. This author insists on manifest
rotational invariance of the formalism, whereas we
permit the apparent asymmetry of the singularity line,
while maintaining the rotational and Lorentz invariance
of the content of the theory. Incidentally, the linear
model of Boulware and Gilbert LPhys. Rev. 126, 1563
(196&)), which is discussed by Hagen, does not give an
acceptable idealization of magnetic and electric charge.
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j.,(x) = dx' (a. —a.) (x')

is independent of the integration path, for all points x.
On comparing two such paths, the difference of line
integrals can be expressed by an integration extended
over the surface that is de6ned by the specified bound-
aries. The uniqueness condition reads

exp ieg dS' (h, —h )(x') =1

which must hold for all surfaces, without exception.
When constructed from limits of products (the Ii and G

of the text), operator structures such as Too are then
unambiguously gauge invariant. The effect on F, for
example, of replacing 6elds and potentials with those
associated with a new singularity line is to multiply it
by the operator factor

exp ie dx'. (A, .—A,) (x')

=exp ie (dx") dS' (h —h, )(x'—x")*i'(x")

Since no exponential functions occur, the fact that a
change of the singularity line is not everywhere a gauge
transformation cannot be overcome by a charge quan-
tization condition.

)Pote added im Proof Th. e field theory of electric and
magnetic charge requires the use of potentials with
arbitrary singularity lines. All orientations of the singu-
larity line must be equivalent. Yet, given any particular
choice, pairs of points that are connected by the singu-
larity line appear to have special characteristics. It is
the function of the charge quantization condition to re-
move their anomalous position and restore the equiva-
lence of all space-time points, without exception. This
is the decisive feature that distinguishes the present
6eld theory from the earlier particle theory of Dirac,
who expressly forbids an electrically charged particle
to lie on the singularity line (string") associated with a
magnetically charged particle. The discussion of rela-
tivistic invariance in the text illustrates this 6eld
theoretic viewpoint. The implications of the demand for
equivalence of all points were not completely under-
stood, however. Somewhat surprisingly, the potentials
with an infinite singularity line, which originally
suggested the integer charge quantization condition,
can be used only when the integer is even.

Let a, (x) here refer to the function that is singular
on the semi-infinite line x= n

~

x
~
. There is a unique

unitary transformation associated with the substitution
of n' for n if

exp Liegf;, (x)J,

where the contour C begins at in6nity, move succes-
sively to x—2s, x+-', s, and then returns to infinity.
The complete identity of this operator with the unit
operator follows from the nature of magnetic charge
density eigenvalues-sums of three-dimensional delta
functions multiplied by &g.

Suppose a surface cuts the line x=n~ x~ at a point
with

~ x~ )0 where the directed normal to the surface
is v. Then, the possible integral contributions are

—1 v. n&0

dS.h. (x) = 0, v n=0

v n&0.

If the intersection occurs at x=0, however, the values
of the integral must be multiplied by ~. A factor of ~

also appears should the singularity line not pierce the
surface, but be tangential to it. Now consider the pos-
sible values of J'dS (h,.—h,). If neither singularity
line is tangential to the surface, this integral equals some
integer. Surfaces that cut both lines at the origin are no
exception, since the possible magnitudes of such contri-
butions are —,&-, .It is diferent if either line is tangential
to the surface. In general, the integral will differ from
an integer by ~. Consider, for example, a semi-infinite

plane surface that cuts the line de6ned by n and touches
the line n' at a point. The value of the integral is, say,
(——',)—(—1)= ~~. Now let the surface rotate about the
point until the surface intersects the origin. The integral
becomes (0)—(——',) = ~~. Further rotation by an angle
less than m gives (-', )—(0)= —,'.The other values achieved

by continued rotation are 0 and —~~, before 2 is regained.
When all possible surfaces are considered, the smallest
nonvanishing magnitude assumed by the surface in-

tegr31 is —,'. The condition for the uniqueness of the
singularity line transformation is therefore the integer
quantization rule

eg 4m=m.

The criterion for relativistic invariance can be pre-
sented as

exp ieg dS".h, (x") =1,

where x" is integrated over an arbitrarily small surface
that passes through the point x—x'&0. Since the pos-
sible magnitudes of the surface integral are 0, —,', 1, this
criterion is satisfied without exception.

Now consider the class of infinite singularity line
potentials. Let o, be the weight associated with the semi-
infinite line defined by n, and P = 1—n that of its image.
The uniqueness of singularity line transformations
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requires that

and

e—gn= 2~I&, zegP= 2~rts,

eg/4sr =I=Ni+rts

ttQ —rti ) rtP —Ns ~

Notice, however, that if n, or P, is specified as an irre-
ducible fraction, the integer e must be divisible by the
denominator of that fraction. Thus, in order to use
symmetrical potentials u= p= zr, the integer I must be
even.

Conversations with Bruno Zumino were helpful in
stimulating this closer examination of the theory. $
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Positive-Pion Production Asymmetry with Polarized Bremsstrahlung
Near Second Resonance*

F. F. Lrv ~Nn S. VrTALEt

High Emergy P-hysies Laboratory, Stamford Umieersity, Stamford, Catiformia

(Received 15 December 1965)

The azimuthal asymmetry Z=(ar —o«)/(ar+o~~) in sr+ photoproduction by linearly polarized brems-
strahlung was measured at photon energies from 475 to 750 MeV at 90' and 135' in the center-of-mass
system. The experimental results show that even in this energy region, m-+ are produced predominantly in
the plane of the magnetic vector.

I. INTRODUCTION
'
QHOTOPRODUCTION of pions from nucleons has

been studied for over a decade and much informa-
tion concerning the pion-nucleon system has been
gathered in the 6rst resonance region. ' ' In the second
resonance region, however, there is still much un-
certainty. The usual experimental information consisted
of an angular distribution expressed by a series ex-
pansion in cos|I, 0 being the angle between the outgoing-
pion and the incident-photon directions in the center-of-
mass system. By examining the coefficients in the
expansion, one can try to infer the total angular momen-
tum J of the final state. For a given value of J, there
are, however, two values of / with different parity. A
method of identifying the parity of the state would be
to measure the asymmetry in the photoproduction with
linearly polarized photons, thus discriminating between
electric and magnetic transitions. ~'

In the region of the second resonance, many partial-
wave amplitudes contribute simultaneously to the
process and the analysis is correspondingly involved and
less reliable, making experiments sensitive to the inter-

*Vfork supported in part by the U. S. Ofhce of Naval Research,
Contract No. $Nonr 225(67)j.

t Present address: Istituto Nazionale di Fisica Nucleare, Sezione
di Napoli, Italy.' An extensive bibliography of experimental data on 21-+ photo-
production is given in the paper by G. Hohler and W. Schmidt,
Ann. Phys. (N. Y.) 28, 34 (1964).

~ An extensive bibliography of experimental data on 2I-0 data can
be found in a paper by Ph. Salin, Nuovo Cimento 28, 1294 (1963).' M. Gourdin and Ph. Salin, Nuovo Cimento 27, 193 (1963).

s G. T. HoB, Phys. Rev. 122, 665 (1961).
5 M. J. Moravcsik, Phys. Rev. 125, 1088 (1962).
6 H. A. Rashid, Nuovo Cimento 33, 965 (1965).
7 P. Stichel, Z. Physik 180, 170 (1964).

ference terms of great interest. The differential-cross-
section measurements allow no separation of the real
and the imaginary parts of interference terms. However,
using unpolarized photons, a measurement of the recoil-
ing-nucleon polarization gives information on the
imaginary part of the interference terms and, using
linearly polarized photons, a measurement of production
asymmetry is sensitive to the behavior of the real part
of the interference terms. The recoiling-proton polari-
zation in m' photoproduction has, of course, already
been extensively studied, ' but no corresponding study
has been carried out in x+ case. In the case of x+ photo-
production, where the resonance behavior is more
evident (I=-,), and the angular distribution is already
very complex, a different experimental approach may
be of interest. Asymmetry measurements with polarized
photons can, it is hoped, give an additional constraint
and help in evaluating the relative importance of the
different multipole contributions.

The present experiment was to study this region by
measuring the asymmetry in the production of positive
pions with respect to the polarization plane of the
incident photons. It was an extension to a higher energy
region of similar work done in this laboratory' ' at the
first resonance region. At these energies, contamination
due to pion pair production is unavoidable, if reasonable
polarization of the photon beam is to be achieved. How-
ever, this background cannot alter any inference that
we may draw from the results of this experiment, as
explained later.

8 D. Lundquist, J. A. ABaby, and D. M. Ritson, International
Symposium on Electron and Photon Interactions at High
Energies, Hamburg, 1965 (unpublished).

f) R. C. Smith and R. F. Mozley, Phys. Rev. 130, 2421 (1963)."R.E. Taylor and R. F. Mozley, Phys. Rev. 117, 835 (1959).


